高德平台登陆

<rp id="vdn39"></rp>

      <b id="vdn39"><p id="vdn39"><noframes id="vdn39">

      <ol id="vdn39"><ins id="vdn39"><th id="vdn39"></th></ins></ol>

      <ins id="vdn39"></ins>
      <b id="vdn39"></b>

        1月7日 宋梓霞教授學術報告(數學與統計學院)

        作者:時間:2020-01-06瀏覽:259設置

        報 告 人: 宋梓霞 教授

        報告題目:Ramsey numbers of cycles under Gallai colorings

        報告時間:2020年1月7日(周二)下午14:00

        報告地點:靜遠樓1508學術報告廳

        主辦單位:數學與統計學院、科學技術研究院

        報告人簡介:

               宋梓霞博士是美國中佛羅里達大學(University of Central Florida)數學系教授,博士生導師。主要研究領域為圖論。宋梓霞博士于2000-2004年在美國佐治亞理工大學(Georgia Institute of Technology)獲算法,組合,優化(Algorithm, Combinatorics and Optimization)博士學位,2004-2005年在美國俄亥俄州立大學(The Ohio State University)數學系從事博士后研究。2005年授聘于美國中佛羅里達大學數學系。獲得2009-2011美國NSA科研基金,是美國自然科學基金(NSF)的基金評委。2013年獲校優秀教師獎。

        報告摘要:

               For a graph $H$ and an integer $k\geq1$, the $k$-color Ramsey number $R_{k}(H)$ is the least integer $N$ such that every $k$-coloring of the edges of the complete graph $K_{N}$ contains a monochromatic copy of $H$. Let $C_{m}$ denote the cycle on $m\geq4$ vertices. For odd cycle, Bondy and Erd\H{o}s in 1973 conjectured that for all $k\geq1$ and $n\geq2$, $R_{k}(C_{2n+1})=n2^{k}+1$.Recently, this conjecture has been verified to be true for all fixed $k$ and all $n$ sufficiently large by Jenssen and Skokan; and false for all fixed $n$ and all $k$ sufficiently large by Day and Johnson. Even cycles behave rather differently in this context. Little is known about the behavior of $R_{k}(C_{2n})$ is general. In this talk we will present our recent results on Ramsey numbers of cycles under Gallai coloring, where a Gallai coloring is a coloring of the edges of a complete graph without rainbow triangles. We also completely determine the Ramsey number of even cycles under Gallai coloring.

        Joint work with Dylan Bruce, Christian Bosse, Yaojun Chen and Fangfang Zhang.


        返回原圖
        /

        高德平台登陆
        友情链接:迅达娱乐网址 e游彩票注册 安徽福彩网 manbetx手机版